
Practical experience with

Performance Monitors

on Xeon and Itanium

Monthly Technical Review Meeting

24th October

Ryszard Jurga

Updated slides from the Gelato Meeting, Oct. 2006 2Ryszard Jurga, CERN openlab

Agenda

� Introduction to the CERN computing

� Introduction to Performance Monitoring

� Performance Monitors

� events

� countes

� interfaces

� tools

� some results

� Profiling and some results

� Conclusions

Updated slides from the Gelato Meeting, Oct. 2006 3Ryszard Jurga, CERN openlab

Reminder

Updated slides from the Gelato Meeting, Oct. 2006 4Ryszard Jurga, CERN openlab

Computing@CERN

� High Throughput Computing (HTC)

� lxbatch

� x86 (Xeon), 32bit →64bit

� High Performance Computing (HPC)

� opencluster
• Computational Fluid Dynamics (CFD)

� Itanium, 64bit

� multi processor/core boxes

� many simultaneously running jobs

� interaction, interference

� CPU/memory resources sharing

Updated slides from the Gelato Meeting, Oct. 2006 5Ryszard Jurga, CERN openlab

� The Large Hadron Collider computing

requirements

� 1000s per 1 full event (on CPU with 1000

SpecINT2000)

� up to ~70k-100k CPUs

� Optimization

� performance measurements

� bottleneck identification

� bottleneck analysis

� reimplementation and redesign

The need of monitoring

“Bottlenecks occur in surprising places, so don't try to second guess and put in

a speed hack until you have proven that's where the bottleneck is.” Rob Pike
Principal Google Engineer

Updated slides from the Gelato Meeting, Oct. 2006 6Ryszard Jurga, CERN openlab

Performance Monitoring

� Goal
� analysis of the behavior of a program while running

• e.g. execution time, time spent per function, call graph

� Software Instrumentation
� code snippets to collect required data

• source

– manual,

– compiler assisted (gcc –pg, gprof)

• binary

– offline - binary translation (ATOM)

– online - adds the code dynamically while running (PIN, DynInst)

– high overhead

� portable on the same platform family

� half answer: show problems, where cycles are spent

� time domain

Updated slides from the Gelato Meeting, Oct. 2006 7Ryszard Jurga, CERN openlab

Performance Monitoring HW

� Hardware approach
� more detailed answer: show problems and their

sources

� special on-chip hardware of modern CPU:
Performance Monitors

� different domains: cpu cycles=time, instructions,
cache misses etc.

� less overhead

� less portability

� Hybrid solution
� both: instrumentation and hardware solutions

• e.g. The Tuning and Analysis Utilities (TAU)

Updated slides from the Gelato Meeting, Oct. 2006 8Ryszard Jurga, CERN openlab

Performance Monitoring at CERN

Hardware

x86, IPF

Interfaces

Perfctr, perfmon

Libraries

Libpefctr, libpfm, PAPI

Tools

pfmon, perfex,PerfSuite, q-tools, oprofile, caliper, gpfmon

USERS

Updated slides from the Gelato Meeting, Oct. 2006 9Ryszard Jurga, CERN openlab

Performance Monitor - events

� Ideas

� count all events which can affect performance of

application

� events – e.g. cpu cycles, number of executed

instruction, branch miss-predicted, cache misses

� flat information on Xeon – e.g. total number of

cycles and cycles when the processor is halted

� break down on Itanium – e.g. you can go from

stalls into their sources

Updated slides from the Gelato Meeting, Oct. 2006 10Ryszard Jurga, CERN openlab

Counters

� 40bit (Xeon), 48bit(Itanium2, Montecito)

� 18 (Xeon), 4 (Itanium2), 12 (Montecito)
� not enough

� 4 groups of counters (Xeon)

• up to 6 counters per one group

� Only up 2 counters/group can run independently

� counters are assigned to specific events

� at-retirement events require up to 2 counters (Xeon and
tagging)

� counters are freely available (IPF)

� certain events can not be measured together

� other features:
� enable the cascading of paired counters (Xeon)

Updated slides from the Gelato Meeting, Oct. 2006 11Ryszard Jurga, CERN openlab

Performance Monitors – other features

� capture event information and instruction

pointer – useful in profiling

� Precise Event-Based Sampling (PEBS) on Xeon

� Event Address Registers (EARs) on IPF

� tracing branches – determine the path taken

to reach a particular code location – useful in

a call graph approach

� Branch Trace Store (BTS) Xeon

� Branch Trace Buffer (BTB) IPF

� Instruction Address Range Matching (IPF)

� counting within the IP range

Updated slides from the Gelato Meeting, Oct. 2006 12Ryszard Jurga, CERN openlab

Our requirements

� we look for universal and portable interface
and tools

� support for
� x86 - lxbatch

� IPF - opencluster

� kernel 2.4 & 2.6

� user/kernel domain

� per thread/system-wide context

� multiplexing

� counting, sampling, profiling

� working with sources/binaries

Updated slides from the Gelato Meeting, Oct. 2006 13Ryszard Jurga, CERN openlab

Interfaces - perfctr

� perfctr

� Intel x86, AMD K7/K8, Cyrix , VIA C3, WinChip,

PowerPC,

� no IPF

� Lesser GPL

� libperfctr.so library

� kernel 2.4 & 2.6

� no multiplexing

� no documentation (apart from comments in
source files)

Updated slides from the Gelato Meeting, Oct. 2006 14Ryszard Jurga, CERN openlab

Interfaces - perfmon

� perfmon

� IPF, Pentium M/P6,Pentium 4/Xeon (32&64bit),

Opteron 64bit, MIPS 5k/20k, Power5

� GPL, MIT License

� libpfm.so library

� kernel 2.6

no kernel 2.4 support

� multiplexing

library supports mainly for IPF

� recently updated library support – e.g. Xeon

� good documentation

Updated slides from the Gelato Meeting, Oct. 2006 15Ryszard Jurga, CERN openlab

Cross Platform Interface

� Performance Application Programming

Interface (PAPI)

� x86, IPF

• perfctr & perfmon

� Linux/Windows

� all counter operations

� multiplexing

� user/kernel domain

� counters are aggregated for the current process

� not for any others in the system

Updated slides from the Gelato Meeting, Oct. 2006 16Ryszard Jurga, CERN openlab

Tools - pfmon

� http://perfmon2.sourceforge.net
� basic counting

� sampling

� per thread/system-wide mode

� user/kernel domain

� 2.6 kernel
� SLC4 is coming

� only for IPF (perfmon)
� more processors supported in a new version

� no multiplexing
� multiplexing support already available

� not in a sampling mode

� no profiling
� profiling support in a new version

� --smpl-module=inst-hist, --smpl-show-function
� --resolve-addresses (shared libraries)

� number of function calls (IPF only)

� wrapping script i2prof.pl – lots of metrics

Updated slides from the Gelato Meeting, Oct. 2006 17Ryszard Jurga, CERN openlab

Tools - PerfSuite

� http://perfsuite.ncsa.uiuc.edu (psrun,
psprocess ...)
� basic counting

� sampling

� no system-wide mode

� user/kernel domain

� 2.4 & 2.6 kernel

� X86 & IPF (perfctr, perfmon, PAPI)

� more processors supported in a new version

� profiling support

� flat profile – neither number of function calls nor
call graph

Updated slides from the Gelato Meeting, Oct. 2006 18Ryszard Jurga, CERN openlab

Tools - Caliper

� http://hp.com/go/caliper

� counting/profiling

� shared libraries

�per process/system wide mode

�overall value for all CPU

� no break down into multi core/processors

� no multiplexing

�updated in new release

� flat profile/number of function calls/call graph

�gives guidance about improving the performance

� only IPF

Updated slides from the Gelato Meeting, Oct. 2006 19Ryszard Jurga, CERN openlab

Tools – oprofile,q-tools

� oprofile.sourceforge.net
� x86 & IPF, ...
� system-wide profiler

� shared libraries

� kernel 2.4 & 2.6
� requires root access
� up to all available counters

� no multiplexing

� output
� per library, per function, call graph

� http://www.hpl.hp.com/research/linux/q-tools
� system-wide profiling (q-syscollect)
� one/multi thread mode (qprof)
� shared libraries
� one hardware event
� flat profile or call graph
� only IPF

Updated slides from the Gelato Meeting, Oct. 2006 20Ryszard Jurga, CERN openlab

Experience with Xeon

� there is no tool which meets our requirements in the
domain of system-wide monitoring (counting, sampling)

� we decided to develop our own tool

� gpfmon

• uses perfctr interface and library

• user/kernel domain

• per single or total CPU

� enables multiplexing

• 4 even sets

• cpu cycles, instructions completed, branches taken predicted

and mispredicted, L2 load and store missed, FP, scalar, load

and stores instructions

• we miss average 2% samples, apart from L2 store missed – 92%

Updated slides from the Gelato Meeting, Oct. 2006 21Ryszard Jurga, CERN openlab

gpfmon sample results

� Geant4 Atlas simulation

� IPC - 0.34

� FP - 18%

� LD+ST - 63% (7% LD

caused L2 cache miss)

� Branches - 10%, taken

predicted/mispredicted=36

� Lxbatch (Averages)

� IPC – 0.5

� FP -14%

� LD+ST – 52%

� Branches – 10%, taken

predicted/mispredicted=56

Total instructions/cycle

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000

Total instructions/cycle

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 500 1000 1500 2000 2500

IN
S

/C
Y

C

Instructions/cycle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5401
5403
5404

5405
5406
5501

5502
5504
5505

5509
6104
6105

6106
6108 avr

Float/total insts [%]

0

5

10

15

20

25

54
01

54
03

54
04

54
05

54
06

55
01

55
02

55
04

55
05

55
09

61
04

61
05

61
06

61
08 av

r

Load+Store/total [%]

0

10

20

30

40

50

60

70

5401

5403

5404

5405

5406

5501

5502

5504

5505

5509

6104

6105

6106

6108 avr

branches/total [%]

0

2

4

6

8

10

12

14

5401

5403

5404

5405

5406

5501

5502

5504

5505

5509

6104

6105

6106

6108 avr

branches taken predicted/total [%]

0

2

4

6

8

10

12

14

5401

540
3

54
04

5405

54
06

5501

550
2

5504

550
5

5509

610
4

61
05

6106

61
08 avr

branches taken mispredicted/total [%]

0

0.05

0.1

0.15

0.2

0.25

0.3

5401
5403
5404
5405
5406
5501
5502
5504
5505
5509
6104
6105
6106
6108 avr

Updated slides from the Gelato Meeting, Oct. 2006 22Ryszard Jurga, CERN openlab

Profiling

� no access to sources of profiled applications

� from a single executable up to huge

applications with more than 400 shared libs

and profiling time up to 12 hours

� Geant4 libraries and benchmarks (Xeon, Itanium)

� Atlas and LHCb simulations

� Atlas reconstruction

Updated slides from the Gelato Meeting, Oct. 2006 23Ryszard Jurga, CERN openlab

Profiling

� we use PerfSuite
� Does not work with python scripts running from

command line

� unpredictable behevior on AFS (Andrew File
System)

� a problem with resoving function names
� unknown functions with static libraries

� a huge problem with shared libraries

– in order to monitor, PerfSuite has to know all of them in
advance

» LD_PRELOAD variable – a big challange - how to
select interesting libraries from 400+ without causing
dependence error?

» use oprofile to have another look

Updated slides from the Gelato Meeting, Oct. 2006 24Ryszard Jurga, CERN openlab

PerfSuite & LD_PRELOAD

Updated slides from the Gelato Meeting, Oct. 2006 25Ryszard Jurga, CERN openlab

PerfSuite – Atlas simulation profiling

2550219 0.65% 39.23% G4SandiaTable::GetSandiaCofPerAtom()

2540628 0.65% 39.88% G4PhotoNuclearCrossSection::GetCrossSection()

2413526 0.61% 40.49% G4Transportation::AlongStepDoIt()

2407946 0.61% 41.10% CLHEP::HepJamesRandom::flat()

2396557 0.61% 41.71% G4PolyPhiFace::Intersect()

2390632 0.61% 42.32% G4HadronCrossSections::CalcScatteringCrossSections()

2343439 0.60% 42.92% G4MagInt_Driver::QuickAdvance()

2277101 0.58% 43.50% CLHEP::HepRotation::rotateAxes()

2244256 0.57% 44.07% G4PhysicsVector::GetValue()

2242211 0.57% 44.64% G4SteppingManager::SetInitialStep()

2228671 0.57% 45.20% G4Tubs::Inside()

2171964 0.55% 45.76% G4NormalNavigation::ComputeStep()

2132567 0.54% 46.30% G4VEmProcess::GetMeanFreePath()

2083184 0.53% 46.83% G4VoxelNavigation::LevelLocate()

2067235 0.53% 47.35% G4VoxelNavigation::ComputeVoxelSafety()

1978418 0.50% 47.86% G4VoxelNavigation::VoxelLocate()

1944091 0.49% 48.35% G4PropagatorInField::IntersectChord()

1892005 0.48% 48.83% G4eBremsstrahlungModel::SampleSecondaries()

1889364 0.48% 49.31% G4PolyconeSide::Inside()

1875195 0.48% 49.79% G4PolyconeSide::Distance()

1853968 0.47% 50.26% G4AffineTransform::G4AffineTransform()

1842997 0.47% 50.73% G4EnclosingCylinder::MustBeOutside()

1841307 0.47% 51.20% G4StepPoint::operator=()

1805522 0.46% 51.66% G4ParticleChange::CheckIt()

1793612 0.46% 52.12% G4VCSGfaceted::DistanceToOut()

1772012 0.45% 52.57% G4TrackingManager::ProcessOneTrack()

1731569 0.44% 53.01% G4HadronicProcess::GetMeanFreePath()

1631892 0.42% 53.42% G4MagInt_Driver::AccurateAdvance()

1612075 0.41% 53.83% G4ChordFinder::AdvanceChordLimited()

1546908 0.39% 54.23% std::vector<G4VTrajectoryPoint*,
std::allocator<G4VTrajectoryPoint*> >::_M_insert_aux()

1504737 0.38% 54.61%
G4VContinuousDiscreteProcess::PostStepGetPhysicalInteractionLength()

1471951 0.37% 54.98% G4VEnergyLossProcess::GetMeanFreePath()

1456046 0.37% 55.35% _int_free

1449124 0.37% 55.72% G4VCSGfaceted::DistanceToIn()

Function Summary

--

Samples Self % Total % Function

30728046 7.82% 7.82% ??
7320624 1.86% 9.68% G4Transportation::AlongStepGetPhysicalInteractionLength()

6689448 1.70% 11.38% G4VoxelNavigation::ComputeStep()

5873290 1.49% 12.87% G4Navigator::ComputeStep()

5490913 1.40% 14.27% G4PolyconeSide::Intersect()

5278498 1.34% 15.61% G4SteppingManager::Stepping()

5050076 1.28% 16.90% G4PropagatorInField::ComputeStep()

4919562 1.25% 18.15% G4Navigator::LocateGlobalPointAndSetup()

4503773 1.15% 19.30% G4PolyconeSide::DistanceAway()

4366559 1.11% 20.41% G4IntersectingCone::LineHitsCone1()

4295632 1.09% 21.50% G4VoxelNavigation::LocateNextVoxel()

4199824 1.07% 22.57% G4SteppingManager::DefinePhysicalStepLength()

4033883 1.03% 23.59% G4MultipleScattering52::GetContinuousStepLimit()

3938509 1.00% 24.60% G4SteppingManager::InvokePSDIP()

3912491 1.00% 25.59% G4MultipleScattering52::PostStepDoIt()

3766114 0.96% 26.55% G4ClassicalRK4::DumbStepper()

3722683 0.95% 27.50% G4SteppingManager::InvokeAlongStepDoItProcs()

3620741 0.92% 28.42% _int_malloc

3620692 0.92% 29.34% G4Navigator::LocateGlobalPointAndUpdateTouchableHandle()

3604007 0.92% 30.25% LArWheelCalculator::DistanceToTheNeutralFibre()

3598039 0.92% 31.17% vfprintf

3581444 0.91% 32.08% G4UniversalFluctuation::SampleFluctuations()

3259393 0.83% 32.91% G4ElectroNuclearCrossSection::GetCrossSection()

3127408 0.80% 33.71% G4PolyconeSide::PointOnCone()

2872853 0.73% 34.44% G4NavigationLevelRep::G4NavigationLevelRep()

2833732 0.72% 35.16% G4Transportation::PostStepDoIt()

2737712 0.70% 35.85% G4ChordFinder::FindNextChord()

2733244 0.70% 36.55% G4Tubs::DistanceToIn()

2721568 0.69% 37.24% G4VEnergyLossProcess::AlongStepDoIt()

2654097 0.68% 37.92% G4MagErrorStepper::Stepper()

2610649 0.66% 38.58% G4ParticleChangeForTransport::UpdateStepForAlongStep()

Updated slides from the Gelato Meeting, Oct. 2006 26Ryszard Jurga, CERN openlab

Profiling challenges

� Profiling overhead on Xeon and Itanium2

� bigger on Xeon with perfctr than on Itanium2 with

perfmon

� for small sampling periods more time is spent in

a kernel than in a user space – „Heisenberg
Effect”

Updated slides from the Gelato Meeting, Oct. 2006 27Ryszard Jurga, CERN openlab

Our Conclusions

� PMU and already available tools for IPF let

you explore CPU resources in more details

than on the x86 family

� both perfmon2 and pfmon include support

for more and more processors and more

useful features (event multiplexing, profiling)

which makes them more interesting in our

applications

Updated slides from the Gelato Meeting, Oct. 2006 28Ryszard Jurga, CERN openlab

Our Conclusions

� tools are a step behind hardware and do not

take full advantage of performance units,

e.g. BTS on Xeon

� one scalable and portable tool on different

platforms would be an ideal solution

� from ‘hello world program’ up to a huge

framework

� shared and dynamic loaded libraries

� resolving function names

Updated slides from the Gelato Meeting, Oct. 2006 29Ryszard Jurga, CERN openlab

Our Conclusion

� simple profiling is not always a full answer,

we need something more

� number of function calls

� call graph

� without using hardware support we suffer from a
big overhead (e.g. on Xeon PIN ~800%, ATOM

6300% with one of Geant4’s examples)

Updated slides from the Gelato Meeting, Oct. 2006 30Ryszard Jurga, CERN openlab

after the Gelato conference...

� We contribute to perfmon2 & pfmon by:
� improving the resolution of function names from shared

libraries

� testing on x86 (Xeon) as well as on IPF

� Number of function calls
� Dynamic instrumentation

• PIN & ATOM

� triggers (x86) and check-point options in pfmon

� preparing to move to the 64bit performance
monitoring

Updated slides from the Gelato Meeting, Oct. 2006 31Ryszard Jurga, CERN openlab

Questions and answers

Q&A?

