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� Introduction to the CERN computing

� Introduction to Performance Monitoring

� Performance Monitors
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� countes

� interfaces
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� some results

� Profiling and some results

� Conclusions
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Reminder
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Computing@CERN

� High Throughput Computing (HTC)

� lxbatch

� x86 (Xeon), 32bit →64bit

� High Performance Computing (HPC) 

� opencluster
• Computational Fluid Dynamics (CFD)

� Itanium, 64bit

� multi processor/core boxes

� many simultaneously running jobs

� interaction, interference 

� CPU/memory resources sharing
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� The Large Hadron Collider computing

requirements 

� 1000s per 1 full event (on CPU with 1000 

SpecINT2000)

� up to ~70k-100k CPUs

� Optimization

� performance measurements

� bottleneck identification

� bottleneck analysis

� reimplementation and redesign

The need of monitoring

“Bottlenecks occur in surprising places, so don't try to second guess and put in 

a speed hack until you have proven that's where the bottleneck is.” Rob Pike
Principal Google Engineer



Updated slides from the Gelato Meeting, Oct. 2006 6Ryszard Jurga, CERN openlab

Performance Monitoring

� Goal
� analysis of the behavior of a program while running

• e.g. execution time, time spent per function, call graph

� Software Instrumentation
� code snippets to collect required data

• source

– manual, 

– compiler assisted (gcc –pg, gprof)

• binary 

– offline - binary translation (ATOM)

– online - adds the code dynamically while running (PIN, DynInst)

– high overhead

� portable on the same platform family

� half answer: show problems, where cycles are spent

� time domain
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Performance Monitoring HW

� Hardware approach
� more detailed answer: show problems and their 

sources

� special on-chip hardware of modern CPU: 
Performance Monitors

� different domains: cpu cycles=time, instructions, 
cache misses etc.

� less overhead

� less portability

� Hybrid solution
� both: instrumentation and hardware solutions

• e.g. The Tuning and Analysis Utilities  (TAU)
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Performance Monitoring at CERN

Hardware

x86, IPF

Interfaces

Perfctr, perfmon

Libraries

Libpefctr, libpfm, PAPI

Tools

pfmon, perfex,PerfSuite, q-tools, oprofile, caliper, gpfmon

USERS
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Performance Monitor - events

� Ideas

� count all events which can affect performance of 

application

� events – e.g. cpu cycles, number of executed 

instruction, branch miss-predicted, cache misses

� flat information on Xeon – e.g. total number of 

cycles and cycles when the processor is halted

� break down on Itanium – e.g. you can go from 

stalls into their sources
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Counters

� 40bit (Xeon), 48bit(Itanium2, Montecito)

� 18 (Xeon), 4 (Itanium2), 12 (Montecito)
� not enough

� 4 groups of counters (Xeon) 

• up to 6 counters per one group

� Only up 2 counters/group can run independently

� counters are assigned to specific events

� at-retirement events require up to 2 counters (Xeon and 
tagging)

� counters are freely available (IPF)

� certain events can not be measured together

� other features:
� enable the cascading of paired counters (Xeon)
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Performance Monitors – other features

� capture event information and instruction 

pointer – useful in profiling

� Precise Event-Based Sampling (PEBS) on Xeon

� Event Address Registers (EARs) on IPF

� tracing branches – determine the path taken 

to reach a particular code location – useful in 

a call graph approach

� Branch Trace Store (BTS) Xeon

� Branch Trace Buffer (BTB) IPF

� Instruction Address Range Matching (IPF)

� counting within the IP range
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Our requirements

� we look for universal and portable interface 
and tools

� support for 
� x86 - lxbatch

� IPF - opencluster

� kernel 2.4 & 2.6

� user/kernel domain

� per thread/system-wide context

� multiplexing 

� counting, sampling, profiling

� working with sources/binaries
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Interfaces - perfctr

� perfctr

� Intel x86, AMD K7/K8, Cyrix , VIA C3, WinChip, 

PowerPC, 

� no IPF

� Lesser GPL

� libperfctr.so library

� kernel 2.4 & 2.6

� no multiplexing

� no documentation (apart from comments in 
source files)



Updated slides from the Gelato Meeting, Oct. 2006 14Ryszard Jurga, CERN openlab

Interfaces - perfmon

� perfmon

� IPF, Pentium M/P6,Pentium 4/Xeon (32&64bit), 

Opteron 64bit, MIPS 5k/20k, Power5

� GPL, MIT License

� libpfm.so library

� kernel 2.6

no kernel 2.4 support

� multiplexing

library supports mainly for IPF

� recently updated library support – e.g. Xeon

� good documentation
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Cross Platform Interface

� Performance Application Programming 

Interface (PAPI)

� x86, IPF

• perfctr & perfmon

� Linux/Windows

� all counter operations 

� multiplexing 

� user/kernel domain

� counters are aggregated for the current process

� not for any others in the system
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Tools - pfmon

� http://perfmon2.sourceforge.net
� basic counting

� sampling

� per thread/system-wide mode

� user/kernel domain

� 2.6 kernel
� SLC4 is coming 

� only for IPF (perfmon)
� more processors supported in a new version

� no multiplexing
� multiplexing support already available

� not in a sampling mode

� no profiling
� profiling support in a new version

� --smpl-module=inst-hist, --smpl-show-function
� --resolve-addresses (shared libraries)

� number of function calls (IPF only)

� wrapping script i2prof.pl – lots of metrics
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Tools - PerfSuite

� http://perfsuite.ncsa.uiuc.edu (psrun, 
psprocess ...)
� basic counting

� sampling

� no system-wide mode

� user/kernel domain

� 2.4 & 2.6 kernel 

� X86 & IPF (perfctr, perfmon, PAPI)

� more processors supported in a new version

� profiling support 

� flat profile – neither number of function calls nor 
call graph
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Tools - Caliper

� http://hp.com/go/caliper

� counting/profiling

� shared libraries

�per process/system wide mode

�overall value for all CPU

� no break down into multi core/processors

� no multiplexing

�updated in new release

� flat profile/number of function calls/call graph

�gives guidance about improving the performance

� only IPF
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Tools – oprofile,q-tools

� oprofile.sourceforge.net
� x86 & IPF, ...
� system-wide profiler

� shared libraries

� kernel 2.4 & 2.6
� requires root access
� up to all available counters

� no multiplexing

� output
� per library, per function, call graph

� http://www.hpl.hp.com/research/linux/q-tools
� system-wide profiling (q-syscollect)
� one/multi thread mode (qprof)
� shared libraries
� one hardware event
� flat profile or call graph
� only IPF
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Experience with Xeon

� there is no tool which meets our requirements in the 
domain of system-wide monitoring (counting, sampling)

� we decided to develop our own tool

� gpfmon 

• uses perfctr interface and library

• user/kernel domain

• per single or total CPU

� enables multiplexing

• 4 even sets

• cpu cycles, instructions completed, branches taken predicted 

and mispredicted, L2 load and store missed, FP, scalar, load 

and stores instructions

• we miss average 2% samples, apart from L2 store missed – 92%
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gpfmon sample results

� Geant4 Atlas simulation

� IPC - 0.34

� FP - 18%

� LD+ST - 63% (7% LD 

caused L2 cache miss)

� Branches - 10%, taken 

predicted/mispredicted=36

� Lxbatch  (Averages)

� IPC – 0.5

� FP -14%

� LD+ST – 52%

� Branches – 10%, taken 

predicted/mispredicted=56
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Profiling

� no access to sources of profiled applications

� from a single executable up to huge 

applications with more than 400 shared libs 

and profiling time up to 12 hours

� Geant4 libraries and benchmarks (Xeon, Itanium)

� Atlas and LHCb simulations

� Atlas reconstruction
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Profiling

� we use PerfSuite
� Does not work with python scripts running from 

command line

� unpredictable behevior on AFS ( Andrew File 
System)

� a problem with resoving function names
� unknown functions with static libraries

� a huge problem with shared libraries

– in order to monitor, PerfSuite has to know all of them in 
advance

» LD_PRELOAD variable – a big challange - how to 
select interesting libraries from 400+ without causing 
dependence error?

» use oprofile to have another look
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PerfSuite & LD_PRELOAD
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PerfSuite – Atlas simulation profiling

2550219    0.65%   39.23%  G4SandiaTable::GetSandiaCofPerAtom()

2540628    0.65%   39.88%  G4PhotoNuclearCrossSection::GetCrossSection()  

2413526    0.61%   40.49%  G4Transportation::AlongStepDoIt()

2407946    0.61%   41.10%  CLHEP::HepJamesRandom::flat()

2396557    0.61%   41.71%  G4PolyPhiFace::Intersect()

2390632    0.61%   42.32%  G4HadronCrossSections::CalcScatteringCrossSections()

2343439    0.60%   42.92%  G4MagInt_Driver::QuickAdvance()

2277101    0.58%   43.50%  CLHEP::HepRotation::rotateAxes()

2244256    0.57%   44.07%  G4PhysicsVector::GetValue()

2242211    0.57%   44.64%  G4SteppingManager::SetInitialStep()

2228671    0.57%   45.20%  G4Tubs::Inside()

2171964    0.55%   45.76%  G4NormalNavigation::ComputeStep()

2132567    0.54%   46.30%  G4VEmProcess::GetMeanFreePath()

2083184    0.53%   46.83%  G4VoxelNavigation::LevelLocate()

2067235    0.53%   47.35%  G4VoxelNavigation::ComputeVoxelSafety()

1978418    0.50%   47.86%  G4VoxelNavigation::VoxelLocate()

1944091    0.49%   48.35%  G4PropagatorInField::IntersectChord()

1892005    0.48%   48.83%  G4eBremsstrahlungModel::SampleSecondaries()

1889364    0.48%   49.31%  G4PolyconeSide::Inside()

1875195    0.48%   49.79%  G4PolyconeSide::Distance()

1853968    0.47%   50.26%  G4AffineTransform::G4AffineTransform()

1842997    0.47%   50.73%  G4EnclosingCylinder::MustBeOutside()

1841307    0.47%   51.20%  G4StepPoint::operator=()

1805522    0.46%   51.66%  G4ParticleChange::CheckIt()

1793612    0.46%   52.12%  G4VCSGfaceted::DistanceToOut()

1772012    0.45%   52.57%  G4TrackingManager::ProcessOneTrack()

1731569    0.44%   53.01%  G4HadronicProcess::GetMeanFreePath()

1631892    0.42%   53.42%  G4MagInt_Driver::AccurateAdvance()

1612075    0.41%   53.83%  G4ChordFinder::AdvanceChordLimited()

1546908    0.39%   54.23%  std::vector<G4VTrajectoryPoint*,
std::allocator<G4VTrajectoryPoint*> >::_M_insert_aux()

1504737    0.38%   54.61%  
G4VContinuousDiscreteProcess::PostStepGetPhysicalInteractionLength()

1471951    0.37%   54.98%  G4VEnergyLossProcess::GetMeanFreePath()

1456046    0.37%   55.35%  _int_free

1449124    0.37%   55.72%  G4VCSGfaceted::DistanceToIn()   

Function Summary

--------------------------------------------------------------------------------

Samples   Self %  Total %  Function

30728046    7.82%    7.82%  ??
7320624    1.86%    9.68%  G4Transportation::AlongStepGetPhysicalInteractionLength()

6689448    1.70%   11.38%  G4VoxelNavigation::ComputeStep()

5873290    1.49%   12.87%  G4Navigator::ComputeStep()

5490913    1.40%   14.27%  G4PolyconeSide::Intersect()

5278498    1.34%   15.61%  G4SteppingManager::Stepping()

5050076    1.28%   16.90%  G4PropagatorInField::ComputeStep()

4919562    1.25%   18.15%  G4Navigator::LocateGlobalPointAndSetup()

4503773    1.15%   19.30%  G4PolyconeSide::DistanceAway()

4366559    1.11%   20.41%  G4IntersectingCone::LineHitsCone1()

4295632    1.09%   21.50%  G4VoxelNavigation::LocateNextVoxel()

4199824    1.07%   22.57%  G4SteppingManager::DefinePhysicalStepLength()

4033883    1.03%   23.59%  G4MultipleScattering52::GetContinuousStepLimit()

3938509    1.00%   24.60%  G4SteppingManager::InvokePSDIP()

3912491    1.00%   25.59%  G4MultipleScattering52::PostStepDoIt()

3766114    0.96%   26.55%  G4ClassicalRK4::DumbStepper()

3722683    0.95%   27.50%  G4SteppingManager::InvokeAlongStepDoItProcs()

3620741    0.92%   28.42%  _int_malloc

3620692    0.92%   29.34%  G4Navigator::LocateGlobalPointAndUpdateTouchableHandle()

3604007    0.92%   30.25%  LArWheelCalculator::DistanceToTheNeutralFibre()

3598039    0.92%   31.17%  vfprintf

3581444    0.91%   32.08%  G4UniversalFluctuation::SampleFluctuations()

3259393    0.83%   32.91%  G4ElectroNuclearCrossSection::GetCrossSection()

3127408    0.80%   33.71%  G4PolyconeSide::PointOnCone()

2872853    0.73%   34.44%  G4NavigationLevelRep::G4NavigationLevelRep()

2833732    0.72%   35.16%  G4Transportation::PostStepDoIt()

2737712    0.70%   35.85%  G4ChordFinder::FindNextChord()

2733244    0.70%   36.55%  G4Tubs::DistanceToIn()

2721568    0.69%   37.24%  G4VEnergyLossProcess::AlongStepDoIt()

2654097    0.68%   37.92%  G4MagErrorStepper::Stepper()

2610649    0.66%   38.58%  G4ParticleChangeForTransport::UpdateStepForAlongStep()
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Profiling challenges

� Profiling overhead on Xeon and Itanium2

� bigger on Xeon with perfctr than on Itanium2 with 

perfmon

� for small sampling periods more time is spent in 

a kernel than in a user space – „Heisenberg 
Effect”
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Our Conclusions

� PMU and already available tools for IPF let 

you explore CPU resources in more details 

than on the x86 family

� both perfmon2 and pfmon include support 

for more and more processors and more 

useful features (event multiplexing, profiling) 

which makes them more interesting in our 

applications
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Our Conclusions

� tools are a step behind hardware and do not 

take full advantage of performance units, 

e.g. BTS on Xeon

� one scalable and portable tool on different 

platforms would be an ideal solution

� from ‘hello world program’ up to a huge 

framework

� shared and dynamic loaded libraries

� resolving function names
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Our Conclusion

� simple profiling is not always a full answer, 

we need something more

� number of function calls

� call graph

� without using hardware support we suffer from a 
big overhead (e.g. on Xeon PIN ~800%, ATOM 

6300% with one of Geant4’s examples)
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after the Gelato conference...

� We contribute to perfmon2 & pfmon by:
� improving the resolution of function names from shared 

libraries

� testing on x86 (Xeon) as well as on IPF

� Number of function calls
� Dynamic instrumentation

• PIN & ATOM

� triggers (x86) and check-point options in pfmon

� preparing to move to the 64bit performance 
monitoring
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Questions and answers

Q&A?


